58 research outputs found

    A system with adjustable positive or negative thermal expansion

    Get PDF
    We analyse the anisotropic thermal expansion properties of a two-dimensional structurally rigid construct made from rods of different materials connected together through hinges to form triangular units. In particular, we show that this system may be made to exhibit negative thermal expansion coefficients along certain directions or thermal expansion coefficients that are even more positive than any of the component materials. The end product is a multifunctional system with tunable thermal properties that can be tailor-made for particular practical applications.peer-reviewe

    On the mechanical properties and auxetic potential of various organic networked polymers

    Get PDF
    We simulate and analyse three types of two-dimensional networked polymers which have been predicted to exhibit on-axis auxetic behaviour (negative Poisson's ratio), namely (1) polyphenylacetylene networks that behave like flexing re-entrant honeycombs, commonly referred to as ‘reflexynes’, (2) polyphenylacetylene networks that mimic the behaviour of rotating triangles, commonly referred to as ‘polytriangles’ and (3) networked polymers built from calix[4]arene units. More specifically, we compute and compare their in-plane off-axis mechanical behaviour, in particular their off-axis Poisson's ratios and show that in some cases, the sign and magnitude of the Poisson's ratio are dependent on the direction of loading. We propose two functions that can provide a measure for the extent of auxeticity for such anisotropic materials and show that the polytriangles are predicted as the most auxetic when compared with the other networks with the reflexyne re-entrant networks being the least auxetic.peer-reviewe

    SOD1 D91A variant in the southernmost tip of Europeb: a heterozygous ALS patient resident on the island of Gozo

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is frequently caused by mutations in the SOD1 gene. Here, we report the first SOD1 variant in Malta, an archipelago of three inhabited islands in southern Europe. We describe a patient with a sporadic form of ALS living on the island of Gozo in which the heterozygous SOD1 c.272A>C; p.(Asp91Ala) variant was detected. The patient had a late onset (79 years), sensory impairments and rapid disease progression culminating in respiratory failure. ALS has not yet developed in any of the three additional family members in which the D91A variant was identified. None of the healthy controls from the Maltese population were found to carry this variant. This report underscores the high prevalence of the D91A variant in Europe, despite the presence of a North-South gradient in its frequency, and confirms that this variant can be associated with dominant cases in Mediterranean countries.peer-reviewe

    The Application of Lysinibacillus sphaericus for Surface Treatment and Crack Healing in Mortar

    Get PDF
    Micro-cracks, which develop during the service life of reinforced concrete structures, reduce the durability of concrete through the penetration of fluids. Microbially-induced calcium carbonate precipitation (MICP) occurs naturally in the presence of ureolytic bacteria which precipitate calcium carbonate (CaCO3) through urea hydrolysis. This deposition leads to the filling of micro-cracks and sealing of pores, reducing ingress of fluids into the concrete. The research aims were to assess the potential of Lysinibacillus sphaericus for healing cracks in concrete and to study the effects of this treatment on the absorption properties of treated concrete. Lysinibacillus sphaericus was cultivated in vitro and induction of MICP through urea hydrolysis was tested on cement paste with two different calcium sources. The calcium precipitates where characterized by light microscopy, Scanning Electron Microscopy, Energy Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy. The final phase of the study involved testing of the crack healing capacity and the effect on absorption of the MICP process on mortar samples. These parameters were measured by means of visual examinations, light and digital microscopy, Ultrasonic Pulse Velocity (UPV), and absorption tests. The study confirmed that MICP is induced successfully on concrete using Lysinibacillus sphaericus. Samples exposed to repeated treatment cycles of Lysinibacillus sphaericus in the presence of a calcium source, exhibited a more extensive and even coating of CaCO3 crystals on the surface confirming that repeated cycles of treatment are more effective in increasing the amount of CaCO3 deposition and therefore increasing crack healing capacity. Digital microscopy and UPV analysis proved that this precipitate was successful in partially healing cracks in samples. Sorptivity tests confirmed this and showed that it was also successful as a surface treatment to reduce absorption

    Georisks in the Mediterranean and their mitigation

    Get PDF
    An international scientific conference organised by the Seismic Monitoring and Research Unit, Department of Geoscience, Faculty of Science, Department of Civil and Structural Engineering and Department of Construction and Property Management, Faculty of the Built Environment, University of Malta.Part of the SIMIT project: Integrated civil protection system for the Italo-Maltese cross-border area. Italia-Malta Programme – Cohesion Policy 2007-2013This conference is one of the activities organised within the SIMIT strategic project (Integrated Cross-Border Italo-Maltese System of Civil Protection), Italia-Malta Operational Programme 2007 – 2013. SIMIT aims to establish a system of collaboration in Civil Protection procedures and data management between Sicilian and Maltese partners, so as to guarantee the safety and protection of the citizens and infrastructure of the cross-border area. It is led by the Department of Civil Protection of the Sicilian region, and has as other partners the Department of Civil Protection of Malta and the Universities of Palermo, Catania and Malta. SIMIT was launched in March 2013, and will come to a close in October 2015. Ever since the initial formulation of the project, it has been recognised that a state of national preparedness and correct strategies in the face of natural hazards cannot be truly effective without a sound scientific knowledge of the hazards and related risks. The University of Malta, together with colleagues from other Universities in the project, has been contributing mostly to the gathering and application of scientific knowledge, both in earthquake hazard as well as in building vulnerability. The issue of seismic hazard in the cross-border region has been identified as deserving foremost importance. South-East Sicily in particular has suffered on more than one occasion the effects of large devastating earthquakes. Malta, although fortunately more removed from the sources of such large earthquakes, has not been completely spared of their damaging effects. The drastic increase in the building density over recent decades has raised the level of awareness and concern of citizens and authorities about our vulnerability. These considerations have spurred scientists from the cross-border region to work together towards a deeper understanding of the underlying causes and nature of seismic and associated hazards, such as landslide and tsunami. The SIMIT project has provided us with the means of improving earthquake surveillance and analysis in the Sicily Channel and further afield in the Mediterranean, as well as with facilities to study the behaviour of our rocks and buildings during earthquake shaking. The role of the civil engineering community in this endeavour cannot be overstated, and this is reflected in the incorporation, from the beginning, of the civil engineering component in the SIMIT project. Constructing safer buildings is now accepted to be the major option towards human loss mitigation during strong earthquakes, and this project has provided us with a welcome opportunity for interaction between the two disciplines. Finally the role of the Civil Protection authorities must occupy a central position, as we recognize the importance of their prevention, coordination and intervention efforts, aided by the input of the scientific community. This conference brings together a diversity of geoscientists and engineers whose collaboration is the only way forward to tackling issues and strategies for risk mitigation. Moreover we welcome the contribution of participants from farther afield than the Central Mediterranean, so that their varied experience may enhance our efforts. We are proud to host the conference in the historic city of Valletta, in the heart of the Mediterranean, which also serves as a constant reminder of the responsibility of all regions to protect and conserve our collective heritage.peer-reviewe

    Occupation and amyotrophic lateral sclerosis risk : a case-control study in the isolated island population of Malta

    Get PDF
    Objective: Amyotrophic lateral sclerosis (ALS) is a mostly sporadic neurodegenerative disease. The role of environmental factors has been extensively investigated but associations remain controversial. Considering that a substantial proportion of adult life is spent at work, identifying occupations and work-related exposures is considered an effective way to detect factors that increase ALS risk. This process may be further facilitated in population isolates due to environmental and genetic homogeneity. Our study investigated occupations and occupational exposures potentially associated with ALS risk in the isolated island population of Malta, using a case-control study design. Methods: Patients with ALS and randomly identified matched controls (1:1) were recruited throughout a four-year window, from 2017 through 2020. Data on educational level, residence, main occupation, smoking, and alcohol history were collected. Results: We found that compared to controls (44.4%), a higher percentage (73.7%) of ALS patients reported a blue-collar job as their main occupation (OR 2.04, 95% CI 1.2-3.72; p = 0.0072). Through regression analysis, craft and related trades occupations such as carpentry and construction (ISCO-08 major group 7), were found to be positively associated with ALS, with patients in this occupational category found to be more prone to develop bulbar-onset ALS (p = 0.0297). Overall, patients with ALS reported a significantly higher exposure to work-related strenuous physical activity (OR 2.35, 95% CI 1.53-3.59; p = 0.0002). Conclusion: Our findings suggest that manual workers particularly those working in the carpentry and construction industries have an increased ALS risk, possibly due to a history of intense or sustained physical activity.peer-reviewe

    Toxic oligomers of the amyloidogenic HypF-N protein form pores in mitochondrial membranes

    Get PDF
    Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-β, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.peer-reviewe

    Extract from the marine seaweed Padina pavonica protects mitochondrial biomembranes from damage by amyloidogenic peptides

    Get PDF
    The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer's disease (AD) and Parkinson's disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.peer-reviewe

    Genetic landscape of ALS in Malta based on a quinquennial analysis

    Get PDF
    Genetic risk for amyotrophic lateral sclerosis (ALS) is highly elevated in genetic isolates, like the island population of Malta in the south of Europe, providing a unique opportunity to investigate the genetics of this disease. Here we characterize the clinical phenotype and genetic profile of the largest series of Maltese ALS patients to date identified throughout a 5-year window. Cases and controls underwent neuromuscular assessment and analysis of rare variants in ALS causative or risk genes following whole genome sequencing. Potentially damaging variants or repeat expansions were identified in more than 45% of all patients. The most commonly affected genes were ALS2, DAO, SETX and SPG11, an infrequent cause of ALS in Europeans. We also confirmed a significant association between ATXN1 intermediate repeats and increased disease risk. Damaging variants in major ALS genes C9orf72, SOD1, TARDBP and FUS were however either absent or rare in Maltese ALS patients. Overall, our study underscores a population that is an outlier within Europe and one that represents a high percentage of genetically explained cases.peer-reviewe

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore